

GreenVest

VISION · PERFORMANCE · RESULTS

Passive Wetland Restoration Through Stream Restoration

Prepared for: National Stream Restoration Conference, August 2023

Contact:

Laura Kelm, Project Manager laura@greenvestus.com (410) 987-5500 x ext. 119

4201 Northview Drive, Suite 202 Bowie, MD 20716 410-987-5500

Photos of Bacon Ridge Branch Stream Restoration Annapolis, Anne Arundel County, MD

BACKGROUND

Bacon Ridge Branch (Elks Camp Barrett) Stream Restoration

- Full delivery project completed for Maryland State Highway Administration (SHA)
- TMDL stream restoration to meet MS4 permit requirements
- South River Watershed, Anne Arundel County, MD
- Atlantic Coastal Plain

The map to the right depicts the location of the Bacon Ridge Branch Stream Restoration, which flows into the South River.

BACKGROUND

- 17,970 LF total
 - > Approx. 8,000 LF in two main perennial streams
 - ➤ Approx. 10,000 LF in headwater tributaries
- Land Uses
 - ➤ Current: Primarily forested, 10% impervious
 - Historic: ag (hog farming, row crops, pasture)
 - Elks Camp undeveloped for over 100 years
- Drainage Area
 - ➤ Main Stem: 4,495 acres (approx. 7 square miles)
 - ➤ Main Tributary: 631 acres (approx. 1 square miles)

EXISTING CONDITIONS

- Streams incised, 3' to 8' deep
- Typical baseflow approx. 1-3 cfs in Main Stem and Main Tributary
- Stilt grass (*Microstegium vimineum*) dominated understory lacking smaller trees and shrubs
- Groundwater depth assessment
 - ➤ Groundwater depth sampled approx. 10' and 70-100' from edge of stream at multiple locations
 - Plots closer to the stream had greater depth to free water
 - Channel incision draining groundwater

The photographs to the right show preconstruction conditions along the project's Main Tributary, including an understory dominated by stilt grass.

EXISTING CONDITIONS - Wetland Delineation

- Wetlands adjacent to streams in some areas, but not throughout floodplain
 - Patchy, not contiguous
- Some wetlands extending into headwater tributaries
- Primarily PFO wetlands, some PEM and PSS
- Regulatory tidal boundary is a few hundred feet downstream from the restoration area, but the downstream end of the restoration area is tidally influenced

PROJECT GOALS

"Lighter touch" approach – no major stream channel realignment or large-scale grading, minimize imported materials

- 1. Optimize floodplain reconnection
- 2. Increase long-term bed and bank stability
- 3. Manage and slow stormwater flows throughout the full width of the valley bottom
- 4. Create and enhance the ecological functions of existing and historic non-tidal wetlands and stream habitats

The photograph shows preconstruction conditions along the project's Main Tributary.

STREAM RESTORATION DESIGN – Engineered Wood Log Jams

Primary restoration method

Raise water surface elevation and reconnect floodplain

- Baseflow channel
- Multiple out-of-bank events per year
- Constructed with wood harvested on site
- Rootwads, trunks, treetops and branches
- Leaf litter, woody debris, and other organic matter replenish structures over time
- 61 log jams total, placed every 0.5' of elevation drop for redundancy
- Woody debris in floodplain adds roughness and habitat
- Detail has evolved since this project work in progress!

The log jams details were designed and engineered by Biohabitats.

PLAN VIEW

MONITORING GROUNDWATER

- 3 transects installed on site pre-construction
 - 2 on Main Stem, 1 on Main Tributary
- Each has 3-4 groundwater loggers and an in-stream logger
 - 11 groundwater wells and 3 in-stream loggers total
- Wells installed 50' to 300' from top of bank
- Wetland delineation data sheet completed at each well upon install

Right: Map showing the locations of in-stream loggers and groundwater wells.

Above: An in-stream logger (left) and groundwater well (right).

MONITORING GROUNDWATER

Pre-Construction Groundwater Logger Installation

Logger ID	Hydric Soil Indicators?	Hydrophytic Vegetation?**	Wetland Hydrology?	Was it a Wetland?
T1-GW1	Yes	Yes	No	No*
T1-GW2	No	Yes	No	No
T1-GW3	Yes	Yes	No	No*
T1-GW4	No	Yes	No	No
T2-GW1	Yes	Yes	Yes	Yes
T2-GW2	No	Yes	No	No
T2-GW3	Yes	Yes	No	No*
T2-GW4	Yes	Yes	No	No*
T3-GW1	Yes	Yes	No	No*
T3-GW2	Yes	Yes	No	No*
T3-GW3	No	Yes	No	No

^{*}These locations are remnant wetlands – they were previously wetlands, but not in August 2019 due to a lack of hydrology.

^{**}While vegetation meets wetland criteria, most of the species are FAC.

STREAM RESTORATION CONSTRUCTION

POST-CONSTRUCTION STREAM RESULTS

These photos show the increase in stream water surface elevation at the location of a constructed log jam pre- and post-construction.

POST-CONSTRUCTION STREAM RESULTS

These photographs, taken by Biohabitats, show the increase in stream water surface elevation pre- and post-construction.

POST-CONSTRUCTION GROUNDWATER RESULTS

Transect T1 on the Main Stem

Logger ID	Approx. Distance from Stream (ft)
T1-S1	In-Stream
T1-GW1	50 feet
T1-GW2	100 feet
T1-GW3	200 feet
T1-GW4	300 feet

POST-CONSTRUCTION GROUNDWATER RESULTS

Transect T2 on the Main Tributary

Logger ID	Approx. Distance from Stream (ft)
T2-S1	In-Stream
T2-GW1	50 feet
T2-GW2	100 feet
T2-GW3	200 feet
T2-GW4	270 feet

POST-CONSTRUCTION GROUNDWATER RESULTS

Transect T3 on the Main Tributary

Logger ID	Approx. Distance from Stream (ft)
T3-S1	In-Stream
T3-GW1	50 feet
T3-GW2	100 feet
T3-GW3	200 feet

- Groundwater elevation increased immediately ≥ 2' at the majority of wells right after construction
- T3-GW3 only increased approx. 1', but it's 200' from the stream channel
- The groundwater increase necessary to re-create hydric soil conditions has been sustained

WETLAND RESULTS

Year 2 (July 2021)

- Vegetation and hydrology indicators recorded at each groundwater well, soils not monitored
- All 11 well locations had wetland hydrology during monitoring or met criteria earlier in 2021 according to groundwater loggers
- All 11 well locations had hydrophytic vegetation
- This includes all 3 wells at the valley walls, T1-GW4 (300' from stream), T2-GW4 (270' from stream), and T3-GW3 (200' from stream)

Year 3 (2022)

- Hydrographs show wetland hydrology at 9 out of 11 wells
 - All except T1-GW4 and T3-GW3

PROJECT CHALLENGES AND ADAPTIVE MANAGEMENT

- Beaver
 - > Eating some woody vegetation
 - ➤ Large (3' high) dam on first Main Tributary log jam retaining organic matter → less entering system
 - ➤ Adaptive Management: Managing beaver impacts if needed, not beaver presence
- Woody vegetation survival lower than anticipated
 - Deer, increased hydrology, beaver
 - ➤ Adaptive Management: Supplemental plantings
- Highly erodible soils coupled with hydrology contribute to more flow around and through log jams than anticipated
 - ➤ Adaptive Management: Filling voids in log jams where possible with a variety of material

A large beaver dam on the upstream end of the Main Tributary – facing upstream to the dam in December 2021 (above) and the adjacent right floodplain in April 2022 (left).

PROJECT CHALLENGES AND ADAPTIVE MANAGEMENT

- Decreased water surface elevations in some locations, particularly the Main Tributary
 - > Potentially due to increased porosity, piping flows, precipitation
 - > Some sediment in structures has likely washed away
 - Adaptive management: Filling voids in log jams where possible with a variety of material, supplemental planting including sod mats
- Log jam at downstream tie-in to unrestored, tidal channel was not holding upstream water surface elevation
 - ➤ Adaptive Management: Re-constructed 3 log jams and built 3 new log jams at the tidal interface to slowly decrease invert elevations and build a stronger tie-in
 - ➤ Tie-in now includes imported rock, and all new and reconstructed log jams include bentonite fabric

Above: A log jam that received adaptive management to encourage flows over the structure. Left: A new log jam under construction at the downstream end of the project. The white material in the photo is bentonite fabric.

WILDLIFE OBSERVATIONS

Species Observed After Construction*

- Great blue heron
- Mallard and wood duck
- Blue-gray gnatcatcher
- Belted kingfisher
- Eastern phoebe
- Swamp sparrow
- Red-tailed hawk
- Wild turkey
- Bald eagle
- Spring peeper
- Wood frog
- American toad
- Eastern ratsnake
- Copperhead snake
- Snapping turtle
- Beaver
- Fox
- Two-lined salamander
- Fish throughout project area

Forest Interior Dwelling Species ("FIDS") Observed

- Barred owl
- Hairy woodpecker
- Pileated woodpecker
- Red-shouldered hawk
- Red-eyed vireo
- Northern parula
- Brown creeper
- Ovenbird
- Louisiana waterthrush
- Wood thrush

Clockwise from top left: White-breasted Nuthatch, Wood Thrush, Maintenance Crew (beaver), Raccoon prints, and Eastern Box Turtle.

450

*No formal wildlife monitoring has been conducted; this is a sampling of what has been casually observed since the completion of construction

CURRENT STATUS

- Main Tributary in-stream logger shows decrease in water level, but not groundwater loggers (red circles)
 - Lower in-stream water level at some locations possibly due to piping flows and increased log jam porosity
 - Wetland hydrology maintained by saturation of floodplain soils
 - Role of precipitation/drought?
- Overall, site is performing well compared to pre-construction:
 - Reduced in-stream erosion
 - Trapping sediment in pools
 - Increased floodplain connectivity
 - Maximized ecological uplift
 - Increased wetland function, value, structure, and composition

